

Gamma-Ray Burst Central Engines with Binary Population Synthesis Models

Ashley Chrimes

Elizabeth Stanway (Warwick), JJ Eldridge (Auckland)

University of Warwick, Coventry, UK - email: a.chrimes@warwick.ac.uk

18th December 2019 / 30th Texas Symposium on Relativistic Astrophysics / University of Portsmouth

Gamma-ray burst requirements

Long-duration gamma-ray bursts (GRBs) arise from the collapse of massive, stripped envelope, rapidly spinning stars. We know this because...

Stripped envelope supernova

They are associated with broad-line type Ic supernovae (~10⁵² erg and lacking in hydrogen and helium) – *observational*

Íow Z

Low metallicity environments

They prefer low-metallicity¹ host environments: implies faster spinning stars – *observational*

Relativistic jets

They launch relativistic jets ($\Gamma \sim 100$), requiring a rotating central engine (see e.g. Blandford-Znajek mechanism) – *theoretical*

Metallicity Z: the fraction of stellar mass that is not hydrogen or helium

18.12.2019

What are the central engines?

What powers the launch of relativistic jets in GRBs?

Black hole accretion disc

star

field

Narayan et al. 1992, Woosley et al. 1993 Accretion powered, requires specific angular momentum $> 10^{16} \text{ cm}^2 \text{s}^{-1}$ at ISCO

Metzger et al. 2011, Neutron Mazalli et al. 2014 magnetic E.g. magnetic tower mechanism, requires a ms-period magnetar

Plateaus in GRB X-ray light curves (as in this example from Vaughan et al. 2006) are indicative of continued central engine activity

The host galaxy metallicity distribution, as determined by various studies

What are the progenitor systems?

We need a model for long-duration, core-collapse GRBs that explains (i) the GRB prompt and afterglow emission (i.e., works with the collapsar or magnetar models) and (ii) the host galaxy properties.

Single stars: e.g. Wolf-Rayet, O stars (hard to maintain spin **and** lose envelope) Quasi Homogenous Evolution (QHE): accretion onto a secondary star spins it up to rotational speeds that mix the stellar interior.

Binary stars with tides: tidal interactions maintain spins, counteracting the effects of mass-loss

Other: e.g. binary driven hypernova where the GRB is launched by NS →BH collapse induced by the SN of a companion

18.12.2019 C

The host galaxy metallicity distribution, as determined by various studies

What are the progenitor systems?

We need a model for long-duration, core-collapse GRBs that explains (i) the GRB prompt and afterglow emission (i.e., works with the collapsar or magnetar models) and (ii) the host galaxy properties.

Quasi Homogenous Evolution (QHE): accretion onto a secondary star spins it up to rotational speeds that mix the stellar interior

Binary stars with tides: tidal interactions maintain spins, counteracting the effects of mass-loss

18.12.2019

Using Langer & Norman 2006 distributions.

Eldridge et al. 2019 synthesised the rates of GW and EM transients using BPASS. Only the QHE pathway was considered for long-GRBs.

BPASS

Binary Population and Spectral Synthesis

- Range of models, IMF, binary parameters see **Eldridge et al. 2017** for a full description
- Each model is weighted according to it's frequency in a $10^6 \mbox{ M}_{\odot}$ stellar population (at the chosen metallicity)
- Project to investigate the plausibility of non-QHE progenitor channels using BPASS – described in Chrimes, Stanway & Eldridge 2019
- Previous studies include Fryer et al. 2007, Trenti et al. 2015...

18.12.2019 (

Model selection

The first step is to select models which

(a) produce black holes or neutron star remnants, and

(b) are H and He poor (Ic SN progenitors)

Total H mass > $5 \times 10^{-4} M_0 \rightarrow$ Type II If type I: He ejecta fraction > $0.2 \rightarrow$ Type Ib

18.12.2019 🔘

Ashley Chrimes

Progenitors on the HRD

• Pre-explosion progenitor imaging

See Walborn et al. 1987, Adams et al. 2017, Smartt et al. 2015, Van Dyk et al. 2018, Kilpatrick et al. 2018...

Tidal post-processing

$8M_{\odot}$, 0.9 mass ratio, $\log_{10}(P/days)=0.2$

We need to consider stellar spins: the models are post-processed to include tidal interactions¹.

Binaries are synchronised upon primary envelope expansion, and kept tidally locked after that.

MCMC Results - Magnetars

18.12.2019 🔘

MCMC Results - Collapsars

Fitted rates from Perley et al. 2016 (SHOALS), $>10^{51}$ erg LGRBs

Still allows for ~10% magnetars

Metallicity distribution

The metallicity distribution, assuming collapsars and an n=3.8 metallicity dependence.

We can also predict the *T* and *L* of the progenitor stars prior to core-collapse.

18.12.2019 🤇

 $J_{\text{cut}} = J_{\text{cut},0} \times \left(\frac{z}{z}\right)$

Core angular momentum

Using the STARS model outputs, the accretion disc *j* can be calculated assuming rigid body rotation, and that the accretion disc forms at the radius enclosing the subsequent remnant mass.

If the 1σ lower bound for n is used, the core j required agrees across the range of metallicities (no reason why that should be Z dependent?)

~10¹⁶ cm²s⁻¹ is the minimum required in the collapsar model!

→ Z^n where $n \sim 1$ is also approximately how opacity scales due to metals in a stellar envelope – higher opacity – higher j_{cut} required

18.12.2019 (

SUMMARY

Binary population synthesis with BPASS can reproduce the long GRB rate and host galaxy properties if:

- There are two channels, QHE and tidally spun-up,
- Black holes are the dominant engines,
- There is a metallicity dependence on the escape of relativistic jets from the stellar envelope once they are launched

Any questions?

Email: a.chrimes@warwick.ac.uk

