The Milky Way neutron star population viewed from afar and the implications for fast radio bursts

рŷ

. Ashley Chrimes

REI Fellow

Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands Email: a.chrimes@astro.ru.nl | Website: ashtronomy.com | Twitter: @astroash42

Session S5

28/06/2021

EUROPEAN ASTRONOMICAL SOCIETY ANNUAL MEETING

Intro - the Milky Way as an FRB host

- Increasing numbers of well localised FRBs (The CHIME/FRB Collaboration 2021)
- Can begin to do host population studies (Heintz et al. 2020, Mannings et al. 2020)
- Measurements such as:

Offset (& host-normed offset)

Enclosed Flux

Flight

- If we asume SGR1935 is a representative FRB source (CHIME/FRB Collab et al. 2020, Bochenek et al. 2020), then the Milky Way is an FRB host galaxy
- If we further assume that all magnetars produce FRBs...
- » Then the distribution of magnetars on the Milky Way should match the distributon of FRBs on their host!

Talk based on Chrimes et al. (2021) – see QR

Aims

- Create a synthetic face-on image of the Milky Way
- Place the Galactic magnetar population on this map, and measure the Galactocentric offsets, enclosed fluxes and Flight distribution
- Do the same with other Galactic neutron star systems (XRBs, pulsars) as many FRB models also invoke neutron stars in binaries, e.g. binary comb models (loka et al. 2020), XRB-type systems etc (Tendulkar et al. 2021)
- Compare to FRBs (and other extragalactic transients)
 - Which extragalactic transients do the Galactic neutron stars best match in terms of locations within their host?

Milky Way image construction

BESSEL bayesian distance assignment of masers, following Reid et al. 2016, 2019

Using Urquhart et al. 2014 YSO/HII region input catalogue.

Exponential with scale length of $R_d = 4 \text{ kpc}$ (Kumar et al. 2020)

Sérsic profile with index n = 1.32 and half-light radius $R_d = 0.64$ kpc. Convolved with the bar profile as mapped by Mira variables with *Gaia* (Grady et al. 2020).

Flynn et al. 2006, Licquia et al. 2015, Bland-Hawthorn & Gerhard 2016, Yu et al. 2018 for the colours and luminosities of the components

Magnetars
McGill catalogue
Olausen & Kaspi (2014)

Pulsars
ANTF database
L > 65 mJy kpc⁻²
Manchester et al. (2005)

LMXBs INTEGRAL catalogue Sazonov et al. (2020)

HMXBs INTEGRAL catalogue Kretschmar et al. (2019)

Galactocentric offsets & enclosed flux

Magnetars versus extragalactic transients

Magnetars versus other Galactic neutron stars

Fraction of light

To generate F_{light} value for each pixel (Fruchter et al. 2006):

- 1. Decide on which pixels will be 'associated' with the Galaxy (12kpc in this case)
- 1. Rank the associated pixels by value in a cumulative sum
- 1. Normalise by the total cumulative flux such that the brightest pixel takes the value 1. Unassociated pixels are assigned 0.

A cumulative distribution of F_{light} values for a transient that is uniformly sampled from the light is a 1:1 line.

Fraction of light

B-band

Summary of comparisons

B-band F_{light} AD-test results

	LGRB	SLSN	FRB	SN Ia	SGRB
Magnetars	0.18	0.09	0.25	0.04	0.00
HMXRBs	0.03	0.01	0.25	0.01	0.00
Y. Pulsars	0.10	0.07	0.25	0.05	0.00
Pulsars	0.01	0.00	0.25	0.00	0.00
LMXRBs	0.25	0.25	0.22	0.00	0.00

Also:

- I-band Flight
- <5kpc B-band Flight
- <5kpc I-band Flight</p>

- Enclosed fluxes
- Galactocentric offsets
- I-band host-normed offsets
- B-band host-normed offsets

% p-val >
$$0.05 = \frac{N(AD\text{-tests for all NS, both bands}) > 0.05}{N(AD\text{-tests for all NS, both bands})}$$

Further work – magnetar pop synth

- Updating BPASS (Binary Population and Spectral
- Synthesis, Eldridge et al. 2017, Stanway et al.
- 2018) secondary kick distributions (Eldridge et al.
- 2011), are kicked progenitors plausible?

Other magnetar pathways: white dwarf
 MIC or AIC - see repeating FRB in an M81
 globular cluster (Kirsten et al. 2021)

Conclusions

- We have created a synthetic face-on view of the Milky Way, and place Galactic neutron stars populations on it, based on their helicentric distance estimates
- The Galactic neutron star population, when measured 'from afar', appears more comparable to FRBs than other extragalactic transients
- However, we cannot discern which population (e.g. magnetars, HMXBs) are the best match
- Nevertheless, further evidence that FRBs have their origin in neutron star systems

Thanks for listening!

